The First Transplant?

Sts. Cosmas and Damian c. 4th Century (modern-day Turkey/Syria)
Host Defense Systems

Innate
- external barriers (skin, mucus membranes)
- secretory components (enzymes, histamine, oxygen radicals, etc.)
- certain leukocytes (phagocytes, NK cells, platelets)
- no increase in strength after exposure

Adaptive (Acquired)
- evoked during an immune response
- T & B cells
- Leukocytes (monocytes, neutrophils, mast cells)
- Soluble factors (antibodies, cytokines)
The central component of the adaptive immune response is the binding of peptide to HLA (MHC) and the recognition of the complex by T-cells.
Characteristics of HLA (MHC)

- The human MHC is called HLA
- Region of closely-linked highly polymorphic genes encoded on chromosome 6
- Discovered because of transplantation experiments but plays a role in virtually every type of specific response the immune system can perform.
- “self/non-self discrimination”
HLA Antigen Acquisition

Class I

Class II
T-cells “Born” in Bone Marrow

Pre-T-cell

Thymus

Bone
The Thymus

- Positive selection
- Negative selection

- Cortex
- Medulla
- Interlobular Septum
- Thymic Corpuscle
- Thymic Lobule
- Capsule
In The Thymus

Cell entry
- Subcapsular zone
 - Cells proliferate and differentiate
 - CD-3 -
 - CD-4 -
 - CD-8 -

Positive selection
- Cortex
 - Pre T-cells must be able to recognize HLA
 - CD-3 +
 - CD-4 +
 - CD-8 +

Negative selection
- Corticomedulla
 - Pre T-cells must not be able to recognize HLA/normal peptides
 - CD-3 +
 - CD-4 +
 - CD-8 +

Exit to periphery
- Medulla
 - T-cells emerge from thymus
 - CD-3 +
 - CD-4 + or -
 - CD-8 - or +

T-cells are selected to recognize self HLA with foreign peptide
Three colors in a rectangle!
Modified Rectangle
Modified Rectangles
High Resolution Typing

[Images of American flags]
Number of HLA Alleles

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>DRB</th>
<th>DQA</th>
<th>DQB</th>
<th>DPA</th>
<th>DPB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3830</td>
<td>4647</td>
<td>3382</td>
<td>2252</td>
<td>77</td>
<td>1054</td>
<td>44</td>
<td>740</td>
</tr>
</tbody>
</table>

$$3.58 \times 10^{23}$$ combinations

(358 sextillion)
Why do HLA Testing?

• Solid organ Transplantation
 • Kidney and K/P
 • Liver
 • Heart and H/L

• Bone Marrow Transplantation

• Platelet Transfusion (Class I only)

• Disease Association

• Parentage Determination
<table>
<thead>
<tr>
<th>Disease</th>
<th>HLA</th>
<th>R.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankylosing Spondylitis</td>
<td>B27</td>
<td>87.4</td>
</tr>
<tr>
<td>Post-gonococcal arthritis</td>
<td>B27</td>
<td>14.0</td>
</tr>
<tr>
<td>Acute Anterior Uveitis</td>
<td>B27</td>
<td>14.6</td>
</tr>
<tr>
<td>Narcolepsy</td>
<td>DR 2</td>
<td>129.0</td>
</tr>
<tr>
<td>IDDM</td>
<td>DR 3</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>DR 4</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>DR 3 & 4</td>
<td>14.3</td>
</tr>
<tr>
<td>21-Hydroxylase Deficiency</td>
<td>B47*</td>
<td>15.0</td>
</tr>
<tr>
<td>Rheumatoid Arthritis</td>
<td>DR 4</td>
<td>5.8</td>
</tr>
<tr>
<td>Hemochromatosis</td>
<td>A3</td>
<td>8.2</td>
</tr>
<tr>
<td>Abacavir Hypersensitivity</td>
<td>B*5701</td>
<td>?</td>
</tr>
</tbody>
</table>
Responsibilities of the HLA Lab

• Determine degree of mismatch between donor and recipient
 – HLA typing

• Identify clinically relevant anti-donor HLA antibodies
 – crossmatch (determines donor/recipient compatibility)
 – serum screening (ongoing evaluation of patient’s immune status)
HLA Typing Techniques

- Mixed Leukocyte Culture
- Complement-dependent Cytotoxicity (CDC)
- DNA Testing
DNA Structure

Helix Backbone
Carbon Oxygen Phosphorus

DNA
ATCG
Molecular Typing Methods

- SSP
- SSO
- SBT
- Real-Time qPCR
Examine the LinkSēq Trays
Well Details

• Provides expected curves and peak windows
• Provides a list of specific alleles interrogated in this well
Other testing done by HLA Lab

• **Crossmatching**
 - Donor cells and patient serum
 - Detects antibodies directed against donor Ag

• **Serum Screen**
 - Panel of typed cells reacted against a patient’s serum
 - Detects antibodies to particular HLA Ags
 - Screens out patients with Ab to a donor’s Ag
PRA

- Panel Reactive Antibody
- Percent Reactive Antibody

- Intended to be an assessment of transplantability.

- 20% PRA means that a recipient should crossmatch positive with 20% of donors

- **DO NOT CONFUSE WITH TITER**
Basis of Antibody Testing

Cells or beads + Patient’s serum

Reaction | No reaction
Goals in HLA Antibody Detection

- Is there an anti-HLA antibody present?
 - Serum screen

- Is the antibody clinically relevant?
 - Specificity

- Identification of specific Abs or safe Ags
Luminex Bead Array
Luminex Bead Array
Determination of Significance

<table>
<thead>
<tr>
<th>Serum Reactivity</th>
<th>Antigen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>a</td>
<td>+</td>
</tr>
<tr>
<td>+/+</td>
<td>b</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>c</td>
<td>+</td>
</tr>
<tr>
<td>+/-</td>
<td>d</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A = a + b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B = c + d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C = a + c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = b + d</td>
<td></td>
</tr>
<tr>
<td>T = Total #</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correlation Coefficient (r)

\[r = \frac{a \times d - b \times c}{\sqrt{A \times B \times C \times D}} \]

Chi square \((\chi^2) \)

\[\chi^2 = r^2 \times T \]

p value depends on degrees of freedom
2 x 2 tables have 1 degree of freedom

<table>
<thead>
<tr>
<th>(\chi^2)</th>
<th>2.7055</th>
<th>3.8415</th>
<th>6.6349</th>
<th>7.8794</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>0.1</td>
<td>0.05</td>
<td>0.01</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Serum reactions

\[
\begin{array}{ccc}
+ & 14 & 3 \\
- & 1 & 21 \\
\end{array}
\]

\[
r = \frac{a*d - b*c}{\sqrt{(A*B*C*D)}}
\]

\[
r = \frac{14*21 - 3*1}{\sqrt{(17*22*15*24)}}
\]

\[
r = 0.793
\]

\[
\chi^2 = r^2 * T
\]

\[
\chi^2 = 0.793^2 * 39
\]

\[
\chi^2 = 24.52
\]

\[
p < 0.0001
\]
UNET cPRA Screen

Enter antigens into UNOS database.

<table>
<thead>
<tr>
<th>Unacceptable Antigens</th>
<th>Check all A unacceptable antigens:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>113</td>
<td></td>
</tr>
<tr>
<td></td>
<td>114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>116</td>
<td></td>
</tr>
<tr>
<td></td>
<td>117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>122</td>
<td></td>
</tr>
<tr>
<td></td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>127</td>
<td></td>
</tr>
<tr>
<td></td>
<td>128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>129</td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>132</td>
<td></td>
</tr>
<tr>
<td></td>
<td>133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>134</td>
<td></td>
</tr>
<tr>
<td></td>
<td>135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>137</td>
<td></td>
</tr>
<tr>
<td></td>
<td>138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>139</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

Select BW unacceptable antigen:

- 4
- 6
- N/A

Check all CW unacceptable antigens:

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140

Check DR1/52/53 unacceptable antigens:

- 51
- 52
- 53

Check all DQ unacceptable antigens:

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
PRA then calculated

This patient would be expected to have a positive crossmatch with 60% of the UNOS donors in database.
Crossmatch Techniques

• **Complement-dependent cytotoxicity**
 • (original gold standard; usually augmented)

• **Flow cytometry**
 • (new gold standard)

• **Solid Phase**
 • (ELISA & Luminex; in development)
Why Do The Crossmatch?

• 1969 paper by Terasaki’s group

• Initial reason was to detect high levels of pre-formed antibodies that can cause hyperacute rejection.

• As sensitivity increased, tests may detect low-level antibodies that present varying degrees of risk for graft loss

• Required under CLIA (42 CFR 493.1265)
Quotes

“The ethics of transplanting kidneys without the prior knowledge of the results of the lymphocyte crossmatch test…can reasonably be expected to be questioned”

-Patel and Terasaki. NEJM 280:735, 1969

“The ethics of transplanting patients without the prior knowledge of the antibody status can reasonably be expected to be questioned.”

-Robert Bray, Ph.D., 2002
Basis of Antibody Testing

Cells or beads + Patient’s serum

Reaction

No reaction
Flow Cytometer
Flow cytometry interpretations

T-cell

B-cell

Interpretation for Donor/Recipient XM
(Fluorescent ratio above negative control)

T-cell Crossmatches

- 2.0 or less **Negative**
- > than 2.0 **Positive**

B-cell Crossmatches

- 3.0 or less **Negative**
- > 3.0 < Wk pos ctrl **Doubtful +**
- > than Weak Pos Ctrl **Positive**
Renal and Renal Combinations

- **XM must be done prospectively**

<table>
<thead>
<tr>
<th></th>
<th>Unsensitized Pt.</th>
<th>Sensitized Pt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-cell XM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative (1)</td>
<td>OK to proceed</td>
<td>OK to proceed</td>
</tr>
<tr>
<td>positive (2, 4, 6, 8)</td>
<td>contraindication</td>
<td>contraindication</td>
</tr>
<tr>
<td>B-cell XM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative (1)</td>
<td>OK to proceed</td>
<td>OK to proceed</td>
</tr>
<tr>
<td>weak pos. (2, 4)</td>
<td>probably OK</td>
<td>probably not good</td>
</tr>
<tr>
<td>strong pos. (6, 8)</td>
<td>probably not good</td>
<td>contraindication</td>
</tr>
</tbody>
</table>
VXM Defined

• A virtual crossmatch (VXM) is a prediction of compatibility based on the patient’s alloantibody (Ab) status when compared to a specific donor’s histocompatibility antigens.

• In other words….

It’s a guess!

»
Rules for Virtual Crossmatching

• Knowledge of antibodies outside of the “normal” HLA is of great importance.
 – False negatives

• Predicting VXM positivity solely on CREGs is not advisable.
 – False positives

• Labs should continuously update a patient’s unacceptable antigens as conditions warrant.
 – Look for antibodies to DP and DQα when FNs crop up.

• VXM is a tool that can help facilitate transplantation but cannot stand alone.
 – Until all antibodies that can affect transplantation are taken into account in match algorithms.
Impact of HLA Ab in Transplantation

• Pre- and peri-transplant
 – Access to transplantation
 – Short-term survival (hyperacute, accelerated)

• Post-transplant
 – Survival
 » Acute and chronic rejection
 – Marker for rejection response
Classification of Rejection

<table>
<thead>
<tr>
<th>Type</th>
<th>Time after Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperacute</td>
<td>within minutes</td>
</tr>
<tr>
<td>Accelerated</td>
<td>within 1 month</td>
</tr>
<tr>
<td>Acute*</td>
<td></td>
</tr>
<tr>
<td>Early</td>
<td>6 – 10 days</td>
</tr>
<tr>
<td>Late</td>
<td>11 days – weeks</td>
</tr>
<tr>
<td>Chronic*</td>
<td>months to years</td>
</tr>
</tbody>
</table>

*Antibody-mediated (preformed)

*Cellular- and Antibody-mediated
Responsibilities of the HLA Lab

To Assess Degree of Mismatch

&

To identify Clinically Relevant Anti-Donor HLA Antibodies
HLA is central
WFBMC HLA/Immunogenetics Laboratory
www.wakehealth.edu/HLA

• Director – Michael D. Gautreaux, Ph.D., CHT, D. ABHI

• Supervisor – David F. Kiger, BS, CHT, CHS

• Technologists –
 • C. Elaine Forrest, BA, CHT, CHS
 • Jennie Ward, BS, MT(ASCP), CHT, CHS
 • Sharlie B. Brown, BS, CHT, CHS
 • Tabitha L. Peake, BS, CHT, CHS
 • Kimberly Beane, BS, MT(ASCP), CHT
 • Kelly J. Ingram, BS

• Laboratory Assistant – Joanna Fulcher

• Office Coordinator – Patti Shew